| Discipline: <br> Electrical Engg. | Semester: 3rd | Name of the Teaching Faculty: Er. Saish Ranjan Dhar \& Er. Satyakam Mahapatra |
| :---: | :---: | :---: |
| Subject: Th 2 <br> Circuit and Network Theory | No of Days / Per week class allotted: 5 Classess P/W (75) | Semester From Date: 15/09/2022 To Date: 22/09/2022 No. Of Weeks: 15 |
| WEEK | CLASS DAY | THEORY/PRACTICAL TOPICS |
| $1^{\text {st }}$ | $1^{\text {st }}$ | CHAPER 1. MAGNETIC CIRCUITS <br> 1.1 Introduction |
|  | $2^{\text {nd }}$ | 1.2 Magnetizing force, Intensity, MMF, flux and their relations |
|  | $3^{\text {rd }}$ | 1.3 Permeability, reluctance and permeance |
|  | $4^{\text {th }}$ | 1.4Analogy between electric and Magnetic Circuits |
|  | $5^{\text {th }}$ | 1.5 B-H Curve |
| $2^{\text {nd }}$ | $1^{\text {st }}$ | 1.6 Series \& Parallel magnetic circuit. |
|  | $2^{\text {nd }}$ | 1.7 Hysteresis loop and Doubt clear class |
|  | $3^{\text {rd }}$ | CHAPER 2. COUPLED CIRCUITS <br> 2.1 Self Inductance and Mutual Inductance |
|  | $4^{\text {th }}$ | 2.2 Conductively coupled circuit and mutual impedance |
|  | $5^{\text {th }}$ | 2.3 Dot convention, Coefficient of coupling |
| $3^{\text {rd }}$ | $1^{\text {st }}$ | 2.4 Series and parallel connection of coupled inductors. |
|  | $2^{\text {nd }}$ | 2.5 Solve numerical problems. |
|  | $3^{\text {rd }}$ | CHAPER 3. CIRCUIT ELEMENTS AND ANALYSIS 3.1 Active, Passive, Unilateral \& bilateral, Linear \& Non |
|  | $4^{\text {th }}$ | 3.2 Mesh Analysis, Mesh Equations by inspection |
|  | $5^{\text {th }}$ | Numerical solving |
| $4^{\text {th }}$ | $1^{\text {st }}$ | 3.3 Super mesh Analysis |
|  | $2^{\text {nd }}$ | 3.4 Nodal Analysis, Nodal Equations by inspection |
|  | $3^{\text {rd }}$ | 3.5 Super node Analysis with Numerical solving |
|  | $4^{\text {th }}$ | 3.6 Source Transformation Technique |
|  | $5^{\text {th }}$ | 3.7 Solve numerical problems (With Independent Sources Only) |
| $5^{\text {th }}$ | $1^{\text {st }}$ | Class Test and question Answer Discussion |
|  | $2^{\text {nd }}$ | CHAPER4. NETWORK THEOREMS <br> 4.1 Star to delta and delta to star transformation |
|  | $3^{\text {rd }}$ | Numerical solving |


|  | $4^{\text {th }}$ | 4.2 Super position Theorem |
| :---: | :---: | :---: |
|  | $5^{\text {th }}$ | Numerical solving |
| $6^{\text {th }}$ | $1^{\text {st }}$ | 4.3 Thevenin's Theorem |
|  | $2^{\text {nd }}$ | 4.4 Norton's Theorem |
|  |  | Numerical solving |
|  | $3^{\text {rd }}$ | 4.5 Maximum power Transfer Theorem |
|  | $4^{\text {th }}$ | 4.6 Solve numerical problems(with independent sources only) |
|  | $5^{\text {th }}$ | Previous Year Question answer discussion. |
| $7^{\text {th }}$ | $1^{\text {st }}$ | CHAPER5. AC CIRCUIT AND RESONANCE <br> 5.1 A.C. through R-L, R-C |
|  | $2^{\text {nd }}$ | A.C. through R-L-C Circuit. |
|  | $3^{\text {rd }}$ | 5.2 Solution of problems of A.C. through R-L, R-C \& R-L-C series Circuit by complex algebra method. |
|  | $4^{\text {th }}$ | 5.3 Solution of problems of A.C. through R-L, R-C \& R-L-C parallel \& Composite Circuits |
|  | $5^{\text {th }}$ | 5.4 Power factor \& power triangle |
| $8^{\text {th }}$ | $1^{\text {st }}$ | 5.5 Deduce expression for active, reactive, apparent power. |
|  | $2^{\text {nd }}$ | 5.6 Derive the resonant frequency of series resonance circuit |
|  | $3^{\text {rd }}$ | Derive the resonant frequency of parallel resonance circuit |
|  | $4^{\text {th }}$ | 5.7 Define Bandwidth, Selectivity \& Q-factor in series circuit |
|  | $5^{\text {th }}$ | 5.8 Solve numerical problems |
| $9^{\text {th }}$ | $1^{\text {st }}$ | Previous Year Question answer discussion. |
|  | $2^{\text {nd }}$ | CHAPER6. POLYPHASE CIRCUIT <br> 6.1 Concept of poly-phase system and phase sequence |
|  | $3^{\text {rd }}$ | 6.2 Relation between phase and line quantities in star connection |
|  | $4^{\text {th }}$ | Relation between phase and line quantities in delta connection |
|  | $5^{\text {th }}$ | 6.3 Power equation in 3-phase balanced circuit. |
| $10^{\text {th }}$ | $1^{\text {st }}$ | 6.4 Solve numerical problems |
|  | $2^{\text {nd }}$ | 6.5 Measurement of 3-phase power by two wattmeter method. |
|  | $3^{\text {rd }}$ | 6.6 Solve numerical problems |
|  | $4^{\text {th }}$ | CHAPER7. TRANSIENTS <br> 7.1 Steady state response |


|  | $5^{\text {th }}$ | 7.2 Steady transient state response |
| :---: | :---: | :---: |
| $11^{\text {th }}$ | $1^{\text {st }}$ | 7.3 Response to R-L circuit under DC condition. |
|  | $2^{\text {nd }}$ | 4.4 Response to R-C, circuit under DC condition. |
|  | $3^{\text {rd }}$ | Numerical solving |
|  | $4^{\text {th }}$ | 7.5 Response to RLC circuit under DC condition. |
|  | $5^{\text {th }}$ | 7.6 Solve numerical problems |
| $12^{\text {th }}$ | $1^{\text {st }}$ | Class Test and question Answer Discussion |
|  | $2^{\text {nd }}$ | CHAPER 8. TWO-PORT NETWORK <br> 8.1 Open circuit impedance ( z ) parameters |
|  | $3^{\text {rd }}$ | 8.2 Short circuit admittance (y) parameters |
|  | $4^{\text {th }}$ | 8.3 Transmission (ABCD) parameters |
|  | $5^{\text {th }}$ | 8.4 Hybrid (h) parameters |
| $13^{\text {th }}$ | $1^{\text {st }}$ | 8.5 Inter relationships between Z-Y parameter. |
|  | $2^{\text {nd }}$ | Solve numerical problems |
|  | $3{ }^{\text {rd }}$ | 8.6 Inter relationships between Y-H parameter. |
|  | $4^{\text {th }}$ | Solve numerical problems |
|  | $5^{\text {th }}$ | 8.7 Inter relationships between $\mathrm{H}-\mathrm{Z}$ parameter. |
| $14^{\text {th }}$ | $1^{\text {st }}$ | 8.8 T and $\pi$ representation. |
|  | $2^{\text {nd }}$ | Solve numerical problems |
|  | $3^{\text {rd }}$ | CHAPER 9. FILTERS: <br> 9.1 Define filter Classification of filter. |
|  | $4^{\text {th }}$ | 9.2 Classification of pass Band, stop Band and cut-off frequency. |
|  | $5^{\text {th }}$ | 9.3 Constant - K low pass filter. |
| $15^{\text {th }}$ | $1^{\text {st }}$ | 9.4 Constant - K high pass filter |
|  | $2^{\text {nd }}$ | 9.5 Constant - K Band pass filter. |
|  | $3^{\text {rd }}$ | 9.6 Constant - K Band elimination filter |
|  | $4^{\text {th }}$ | Previous Year Question answer discussion. |
|  | $5^{\text {th }}$ | Previous Year Question answer discussion. |

