Discipline: Electrical Engg.	Semester: 3rd	Name of the Teaching Faculty: Er. Saish Ranjan Dhar & Er. Satyakam Mahapatra
Subject: Th 2 Circuit and Network Theory	No of Days / Per week class allotted: 5 Classess P/W - (75)	Semester From Date: 15/09/2022 To Date: 22/09/2022 No. Of Weeks: 15
WEEK	CLASS DAY	THEORY/PRACTICAL TOPICS
1 st	1 st	CHAPER 1. MAGNETIC CIRCUITS 1.1 Introduction
	2 nd	1.2 Magnetizing force, Intensity, MMF, flux and their relations
	3 rd	1.3 Permeability, reluctance and permeance
	4 th	1.4Analogy between electric and Magnetic Circuits
	5 th	1.5 B-H Curve
2 nd	1 st	1.6 Series & Parallel magnetic circuit.
	2 nd	1.7 Hysteresis loop and Doubt clear class
	3 rd	CHAPER 2. COUPLED CIRCUITS 2.1 Self Inductance and Mutual Inductance
	4 th	2.2 Conductively coupled circuit and mutual impedance
	5 th	2.3 Dot convention, Coefficient of coupling
	1 st	2.4 Series and parallel connection of coupled inductors.
	2 nd	2.5 Solve numerical problems.
3 rd	3 rd	CHAPER 3. CIRCUIT ELEMENTS AND ANALYSIS 3.1 Active, Passive, Unilateral & bilateral, Linear & Non
	4 th	3.2 Mesh Analysis, Mesh Equations by inspection
	5 th	Numerical solving
4 th	1 st	3.3 Super mesh Analysis
	2 nd	3.4 Nodal Analysis, Nodal Equations by inspection
	3 rd	3.5 Super node Analysis with Numerical solving
	4 th	3.6 Source Transformation Technique
	5 th	3.7 Solve numerical problems (With Independent Sources Only)
	1 st	Class Test and question Answer Discussion
	2 nd	CHAPER4. NETWORK THEOREMS 4.1 Star to delta and delta to star transformation
5 th	3 rd	Numerical solving

	4 th	4.2 Super position Theorem
	5 th	Numerical solving
6 th	1 st	4.3 Thevenin's Theorem
	2 nd	4.4 Norton's Theorem
		Numerical solving
	3 rd	4.5 Maximum power Transfer Theorem
	4 th	4.6 Solve numerical problems(with independent sources only)
	5 th	Previous Year Question answer discussion.
7 th	1 st	CHAPER5. AC CIRCUIT AND RESONANCE 5.1 A.C. through R-L, R-C
	2 nd	A.C. through R-L-C Circuit.
	3 rd	5.2 Solution of problems of A.C. through R-L, R-C & R-L-C series Circuit by complex algebra method.
	4 th	5.3 Solution of problems of A.C. through R-L, R-C & R-L-C parallel & Composite Circuits
	5 th	5.4 Power factor & power triangle
8 th	1 st	5.5 Deduce expression for active, reactive, apparent power.
	2 nd	5.6 Derive the resonant frequency of series resonance circuit
	3 rd	Derive the resonant frequency of parallel resonance circuit
	4 th	5.7 Define Bandwidth, Selectivity & Q-factor in series circuit
	5 th	5.8 Solve numerical problems
9 th	1 st	Previous Year Question answer discussion.
	2 nd	CHAPER6. POLYPHASE CIRCUIT 6.1 Concept of poly-phase system and phase sequence
	3 rd	6.2 Relation between phase and line quantities in star connection
	4 th	Relation between phase and line quantities in delta connection
	5 th	6.3 Power equation in 3-phase balanced circuit.
10 th	1 st	6.4 Solve numerical problems
	2 nd	6.5 Measurement of 3-phase power by two wattmeter method.
	3 rd	6.6 Solve numerical problems
	4 th	CHAPER7. TRANSIENTS 7.1 Steady state response

1		
	5 th	7.2 Steady transient state response
11 th	1 st	7.3 Response to R-L circuit under DC condition.
	2 nd	4.4 Response to R-C, circuit under DC condition.
	3 rd	Numerical solving
	4 th	7.5 Response to RLC circuit under DC condition.
	5 th	7.6 Solve numerical problems
_	1 st	Class Test and question Answer Discussion
	2 nd	CHAPER 8. TWO-PORT NETWORK 8.1 Open circuit impedance (z) parameters
12 th	3 rd	8.2 Short circuit admittance (y) parameters
	4 th	8.3 Transmission (ABCD) parameters
	5 th	8.4 Hybrid (h) parameters
	1 st	8.5 Inter relationships between Z-Y parameter.
	2^{nd}	Solve numerical problems
13 th	$3^{\rm rd}$	8.6 Inter relationships between Y-H parameter.
	$4^{ m th}$	Solve numerical problems
	5 th	8.7 Inter relationships between H-Z parameter.
	1 st	8.8 T and π representation.
	2^{nd}	Solve numerical problems
14 th	3 rd	CHAPER 9. FILTERS: 9.1 Define filter Classification of filter.
	4 th	9.2 Classification of pass Band, stop Band and cut-off frequency.
	5 th	9.3 Constant – K low pass filter.
	1 st	9.4 Constant – K high pass filter
_	2 nd	9.5 Constant – K Band pass filter.
15 th	3 rd	9.6 Constant – K Band elimination filter
	4 th	Previous Year Question answer discussion.
	5 th	Previous Year Question answer discussion.